Interferon-Induced Transmembrane Protein–Mediated Inhibition of Host Cell Entry of Ebolaviruses
نویسندگان
چکیده
Ebolaviruses are highly pathogenic in humans and nonhuman primates and pose a severe threat to public health. The interferon-induced transmembrane (IFITM) proteins can restrict entry of ebolaviruses, influenza A viruses, and other enveloped viruses. However, the breadth and mechanism of the antiviral activity of IFITM proteins are incompletely understood. Here, we employed ebolavirus glycoprotein-pseudotyped vectors and ebolavirus-like particles to address this question. We show that IFITM proteins inhibit the cellular entry of diverse ebolaviruses and demonstrate that type I interferon induces IFITM protein expression in macrophages, major viral targets. Moreover, we show that IFITM proteins block entry of influenza A viruses and ebolaviruses by different mechanisms and provide evidence that antibodies and IFITM proteins can synergistically inhibit cellular entry of ebolaviruses. These results provide insights into the role of IFITM proteins in infection by ebolaviruses and suggest a mechanism by which antibodies, though poorly neutralizing in vitro, might contribute to viral control in vivo.
منابع مشابه
Analysis of Ebola Virus Entry Into Macrophages
Ebolaviruses constitute a public health threat, particularly in Central and Western Africa. Host cell factors required for spread of ebolaviruses may serve as targets for antiviral intervention. Lectins, TAM receptor tyrosine kinases (Tyro3, Axl, Mer), T cell immunoglobulin and mucin domain (TIM) proteins, integrins, and Niemann-Pick C1 (NPC1) have been reported to promote entry of ebolaviruses...
متن کاملThe Host Restriction Factor Interferon-Inducible Transmembrane Protein 3 Inhibits Vaccinia Virus Infection
Interferons (IFNs) establish dynamic host defense mechanisms by inducing various IFN-stimulated genes that encodes many antiviral innate immune effectors. IFN-inducible transmembrane (IFITM) proteins have been identified as intrinsic antiviral effectors, which block the entry of a broad spectrum of enveloped RNA viruses by interrupting virus-endosomal fusion. However, antiviral activity of IFIT...
متن کاملCamouflage and Misdirection: The Full-On Assault of Ebola Virus Disease
Ebolaviruses cause a severe hemorrhagic fever syndrome that is rapidly fatal to humans and nonhuman primates. Ebola protein interactions with host cellular proteins disrupt type I and type II interferon responses, RNAi antiviral responses, antigen presentation, T-cell-dependent B cell responses, humoral antibodies, and cell-mediated immunity. This multifaceted approach to evasion and suppressio...
متن کاملExpression Analysis of Interferon Beta Level in HEK293T Cells Using Real-Time PCR and Protein Tests
Background: Interferons are some kind of natural cytokines which express in response to a variety of antigens including viral RNA, bacterial products, and tumor proteins. Interferon beta is used in the treatment of autoimmune diseases such as multiple sclerosis. Moreover, this drug inhibits cellular proliferation as well as angiogenesis and as a result, helps to cure cancer. In this research, i...
متن کاملConserved differences in protein sequence determine the human pathogenicity of Ebolaviruses
Reston viruses are the only Ebolaviruses that are not pathogenic in humans. We analyzed 196 Ebolavirus genomes and identified specificity determining positions (SDPs) in all nine Ebolavirus proteins that distinguish Reston viruses from the four human pathogenic Ebolaviruses. A subset of these SDPs will explain the differences in human pathogenicity between Reston and the other four ebolavirus s...
متن کامل